9 research outputs found

    Joint Analog Beam Selection and Digital Beamforming in Millimeter Wave Cell-Free Massive MIMO Systems

    Full text link
    Cell-free massive MIMO systems consist of many distributed access points with simple components that jointly serve the users. In millimeter wave bands, only a limited set of predetermined beams can be supported. In a network that consolidates these technologies, downlink analog beam selection stands as a challenging task for the network sum-rate maximization. Low-cost digital filters can improve the network sum-rate further. In this work, we propose low-cost joint designs of analog beam selection and digital filters. The proposed joint designs achieve significantly higher sum-rates than the disjoint design benchmark. Supervised machine learning (ML) algorithms can efficiently approximate the input-output mapping functions of the beam selection decisions of the joint designs with low computational complexities. Since the training of ML algorithms is performed off-line, we propose a well-constructed joint design that combines multiple initializations, iterations, and selection features, as well as beam conflict control, i.e., the same beam cannot be used for multiple users. The numerical results indicate that ML algorithms can retain 99-100% of the original sum-rate results achieved by the proposed well-constructed designs.Comment: 14 pages, 11 figures. First submission date: August 19th, 2020. To be published at IEEE Open Journal of the Communications Societ

    Transmit Optimization with Improper Gaussian Signaling for Interference Channels

    Full text link
    This paper studies the achievable rates of Gaussian interference channels with additive white Gaussian noise (AWGN), when improper or circularly asymmetric complex Gaussian signaling is applied. For the Gaussian multiple-input multiple-output interference channel (MIMO-IC) with the interference treated as Gaussian noise, we show that the user's achievable rate can be expressed as a summation of the rate achievable by the conventional proper or circularly symmetric complex Gaussian signaling in terms of the users' transmit covariance matrices, and an additional term, which is a function of both the users' transmit covariance and pseudo-covariance matrices. The additional degrees of freedom in the pseudo-covariance matrix, which is conventionally set to be zero for the case of proper Gaussian signaling, provide an opportunity to further improve the achievable rates of Gaussian MIMO-ICs by employing improper Gaussian signaling. To this end, this paper proposes widely linear precoding, which efficiently maps proper information-bearing signals to improper transmitted signals at each transmitter for any given pair of transmit covariance and pseudo-covariance matrices. In particular, for the case of two-user Gaussian single-input single-output interference channel (SISO-IC), we propose a joint covariance and pseudo-covariance optimization algorithm with improper Gaussian signaling to achieve the Pareto-optimal rates. By utilizing the separable structure of the achievable rate expression, an alternative algorithm with separate covariance and pseudo-covariance optimization is also proposed, which guarantees the rate improvement over conventional proper Gaussian signaling.Comment: Accepted by IEEE Transactions on Signal Processin

    Sub-Stream Fairness and Numerical Correctness in MIMO Interference Channels

    Full text link
    Signal-to-interference plus noise ratio (SINR) and rate fairness in a system are substantial quality-of-service (QoS) metrics. The acclaimed SINR maximization (max-SINR) algorithm does not achieve fairness between user's streams, i.e., sub-stream fairness is not achieved. To this end, we propose a distributed power control algorithm to render sub-stream fairness in the system. Sub-stream fairness is a less restrictive design metric than stream fairness (i.e., fairness between all streams) thus sum-rate degradation is milder. Algorithmic parameters can significantly differentiate the results of numerical algorithms. A complete picture for comparison of algorithms can only be depicted by varying these parameters. For example, a predetermined iteration number or a negligible increment in the sum-rate can be the stopping criteria of an algorithm. While the distributed interference alignment (DIA) can reasonably achieve sub-stream fairness for the later, the imbalance between sub-streams increases as the preset iteration number decreases. Thus comparison of max-SINR and DIA with a low preset iteration number can only depict a part of the picture. We analyze such important parameters and their effects on SINR and rate metrics to exhibit numerical correctness in executing the benchmarks. Finally, we propose group filtering schemes that jointly design the streams of a user in contrast to max-SINR scheme that designs each stream of a user separately.Comment: To be presented at IEEE ISWTA'1

    Improving Achievable Rate for the Two-User SISO Interference Channel with Improper Gaussian Signaling

    Full text link
    This paper studies the achievable rate region of the two-user single-input-single-output (SISO) Gaussian interference channel, when the improper Gaussian signaling is applied. Under the assumption that the interference is treated as additive Gaussian noise, we show that the user's achievable rate can be expressed as a summation of the rate achievable by the conventional proper Gaussian signaling, which depends on the users' input covariances only, and an additional term, which is a function of both the users' covariances and pseudo-covariances. The additional degree of freedom given by the pseudo-covariance, which is conventionally set to be zero for the case of proper Gaussian signaling, provides an opportunity to improve the achievable rate by employing the improper Gaussian signaling. Since finding the optimal solution for the joint covariance and pseudo-covariance optimization is difficult, we propose a sub-optimal but efficient algorithm by separately optimizing these two sets of parameters. Numerical results show that the proposed algorithm provides a close-to-optimal performance as compared to the exhaustive search method, and significantly outperforms the optimal proper Gaussian signaling and other existing improper Gaussian signaling schemes.Comment: Version 2, Invited paper, submitted to Asilomar 201

    Interference alignment testbeds

    Get PDF
    Interference alignment has triggered high impact research in wireless communications since it was proposed nearly 10 years ago. However, the vast majority of research is centered on the theory of interference alignment and is hardly feasible in view of the existing state-of-the-art wireless technologies. Although several research groups have assessed the feasibility of interference alignment via testbed measurements in realistic environments, the experimental evaluation of interference alignment is still in its infancy since most of the experiments were limited to simpler scenarios and configurations. This article summarizes the practical limitations of experimentally evaluating interference alignment, provides an overview of the available interference alignment testbed implementations, including the costs, and highlights the imperatives for succeeding interference alignment testbed implementations. Finally, the article explores future research directions on the applications of interference alignment in the next generation wireless systems.Jacobo Fanjul's research has been supported by the Ministerio de Economía y Competitividad (MINECO) of Spain, under grants TEC2013-47141-C4-R (RACHEL project) and FPI grant BES-2014-069786. José A. García-Naya's research has been funded by the Xunta de Galicia (ED431C 2016–045, ED341D R2016/012, E0431 G/01), the Agencia Estatal de Investigación of Spain (TEC2013-47141-C4-1-R, TEC2015-69648-REOC, TEC2016-75067-C4-1-R), and ERDF funds of the EU (AEI/FEDER, UE). Hamed Farhadi's research has been funded by the Swedish Research Council (VR) under grant 2015–00500
    corecore